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Asymptotic Behavior of the Order Parameter
in a Stochastic Sandpile

Ronaldo Vidigal1 and Ronald Dickman1

Received May 25, 2004; accepted August 13, 2004

We derive the first four terms in a series for the order paramater (the stationary
activity density ρ) in the supercritical regime of a one-dimensional stochas-
tic sandpile; in the two-dimensional case the first three terms are reported.
This is done by reorganizing the pertubation theory derived using a path-inte-
gral formalism [Dickman and Vidigal, J. Phys. A 35, 7269 (2002)], to obtain
an expansion for stationary properties. Since the process has a strictly con-
served particle density p, the Fourier mode N−1ψk=0 →p, when N → ∞, and
so is not a random variable. Isolating this mode, we obtain a new effective
action leading to an expansion for ρ in the parameter κ ≡ 1/(1 + 4p). This
requires enumeration and numerical evaluation of more than 200, 000 diagrams,
for which task we develop a computational algorithm. Predictions derived from
this series are in good accord with simulation results. We also discuss the
nature of correlation functions and one-site reduced distributions in the small-κ
(high-density) limit.

KEY WORDS: Sandpiles; series expansion; path integrals; stochastic processes;
phase transitions.

1. INTRODUCTION

Sandpile models were introduced some 15 years ago as examples of self-
organized criticality (SOC), or scale invariance in the apparent absence
of adjustable parameters.(1–5) Although not directly related to real sand
or other granular systems, these models have attracted great interest in
the quest for understanding the ubiquity of power-law distributions in
nature(6), for example in earthquakes.(7,8)
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Subsequently the appearance of “spontaneous” criticality in sandpiles
was shown to result from a control mechanism that forces the system to a
critical point marking a phase transition to an absorbing state.(9–11) This
absorbing-state phase transition is observed in sandpiles with the same
local dynamics as the original self-organized versions, but with a strictly
conserved particle density, p, which plays the role of a temperature-like
control parameter. Sandpiles with a strictly conserved particle number (to
be called “conserved sandpiles” in what follows) are not self-organized: to
achieve criticality, the particle density must be adjusted to its critical value,
just as the temperature must be adjusted in a fluid or magnetic system.
The particle addition and loss rules in self-organized sandpiles amount to
a control scheme that forces p to its critical value.(9)

Conserved sandpiles, as noted, exhibit an absorbing-state phase
transition,(12–14) analogous to that of the contact process or directed per-
colation (DP). Although the DP universality class is generic for absorb-
ing-state phase transitions,(15,16) simulation results suggest that conserved
sandpiles belong to universality classes other than DP. The difference is
commonly attributed to the presence of a conserved field (the particle den-
sity), but there is as yet no firm basis for this assertion. Understanding
criticality in conserved sandpiles thus presents an interesting challenge to
the ongoing program of understanding nonequilibrium universality clas-
ses.(12,13,17) For the stochastic sandpile to be studied here, simulation
results yield larger values for the critical exponent β, associated with the
order parameter, (about 0.39 and 0.64 in one and two dimensions, respec-
tively), than the corresponding DP values (0.2765 and 0.583 in one and
two dimensions). DP-like critical behavior has been established for sand-
piles with “sticky grains” (in this case above-threshold sites do not always
topple).(18) Finally, the Bak–Tang–Wiesenfeld model, with a determinis-
tic toppling rule, appears to define its own universality class.(19,20) In the
case of conserved sandpiles, a systematic renormalization group analysis
using the epsilon expansion is as yet unavailable. In fact, even the value
of the upper critical dimension remains controversial.(11,21–23) Conflicting
critical exponent values have been reported for the one-dimensional sto-
chastic conserved sandpile,(24–27) possibly reflecting finite-size effects.

Until now, most quantitative results for conserved sandpiles have
been based on simulations,(19,24–26,28,29) an important exception being the
solution by Priezzhev et al.(30) of a directed, conserved version of the
Maslov–Zhang model(31) via the Bethe ansatz. Phenomenological field the-
ories have been proposed for sandpiles,(11,21,22) but their analysis is far
from straightforward. Given the conflicting simulation results in the liter-
ature regarding critical exponents for conserved stochastic sandpiles, it is
of interest to develop alternative approaches. Series analysis has been one
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of the most precise methods for studying critical behavior (both in and
out of equilibrium) since its introduction roughly fifty years ago. Recently,
a time-dependent perturbation theory based on a path-integral formalism
was derived for a stochastic sandpile.(32) In ref. 33 this short-time expan-
sion for the one-dimensional case was extended using operator methods.
These studies, along with the present work, are part of an effort to extend
series methods to sandpiles. Although the present results are not suffi-
cient to yield precision estimates of critical parameters, we believe that this
work represents an important step towards this goal. The theoretical and
computational methods developed here are, moreover, applicable to other
problems in nonequilibrium statistical physics.

In the present work, the perturbation theory developed in ref. 32
is reformulated, leading to a quite different result: an expansion for sta-
tionary (t → ∞) properties in powers of a parameter κ ≡ 1/(1 + 4p) (in
other words, a high-density expansion), instead of the short-time expansion
(with p-dependent coefficients) obtained previously. Since p is the temper-
ature-like control parameter, with large p corresponding the active phase
(nonzero order parameter), the expansion in powers of κ is analogous to
a low-temperature expansion of an equilibrium model. We obtain the first
four terms (three terms in the two-dimensional case) of the activity series,
thereby providing the first analytical results for the stationary properties
of the model.

Our analysis employs two basic tools. One is an operator formal-
ism for Markov processes, of the kind developed by Doi,(34) which has
been applied to various models exhibiting nonequilibrium phase tran-
sitions.(35–39) The second is an exact mapping, devised by Peliti, of a
Markov process to a path-integral representation.(40,41) This approach is
frequently used to generate the effective action corresponding to a pro-
cess, for subsequent analysis via renormalization group (RG) techniques.
In the present instance our immediate objective is not a RG analysis but
an expansion for the order parameter. In the path-integral formalism the
probability generating function is written in terms of functional integrals
over the fields ψ(x, t) (whose expectation is the particle density at site x),
and an auxiliary field ψ̃(x, t). Our reformulation of the effective action is
based on the observation that, due to particle conservation, the Fourier
mode N−1ψk=0 is not a random variable, but rather converges to the fixed
value p as N , the number of lattice sites, tends to infinity.

We consider Manna’s stochastic sandpile in its particle-conserving
version.(24,32,42,43) The configuration is specified by the occupation num-
ber n at each site; sites with n � 2 are said to be active, and have a
positive rate of toppling. When a site topples, it loses exactly two par-
ticles (“grains of sand”), which move randomly and independently to
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nearest-neighbor sites. (Any configuration devoid of active sites is absorb-
ing, i.e., no futher evolution of the system is possible once such a con-
figuration is reached.) In this work, as in,(32,33) we adopt a toppling rate
of n(n−1) at a site having n particles, which leads us to define the order
parameter as ρ=〈n(n− 1)〉. This choice of rate represents a slight depar-
ture from the examples studied previously, in which all active sites have
the same toppling rate. (In the latter case it is natural to define the order
parameter as the fraction of active sites.) The present rate leads to a
much simpler evolution operator, and, on the other hand, should yield the
same scaling properties, since sandpiles, like critical phenomena in general,
exhibit a high degree of universality. (Close to the critical point, the den-
sity of sites with n�3 particles is quite low, so that in practical terms our
choice of rate should not greatly alter quantitative properties. Since stud-
ies of restricted-height sandpiles(23,28) reveal that they belong to the same
universality class as their unrestricted counterparts, there is good reason to
expect that a small change in transition rates, which does not modify the
symmetry or conservation laws of the model, will have no effect on critical
exponents.) Preliminary simulation results indicate that the model studied
here exhibits a continuous phase transition at pc = 0.9493, in one dimen-
sion; this is quite close to the corresponding value, pc = 0.94885, for the
model in which all active sites have the same toppling rate.(24)

The balance of this article is organized as follows. In section 2 we give
a systematic definition of the model, review the path-integral formalism,
and discuss the reorganization of the action. In section 3 we develop the
perturbation expansion for the activity density in the supercritical regime.
section 4 presents the diagrammatic expansion rules and the computa-
tional algorithm used to enumerate and evaluate diagrams. Predictions for
the activity density are reported and compared against simulation in sec-
tion 5, while in section 6 we examine correlation functions and higher
moments of the density. In section 7, we present a brief discussion of our
results.

2. MODEL AND FORMALISM

2.1. Model

We consider Manna’s stochastic sandpile in its particle-conserving
version.(24,42,43) The model is defined on a ring or (in d � 2 dimensions)
hypercubic lattice with periodic boundaries. The configuration is specified
by the occupation number n at each site; sites having n � 2 are active, and
have a toppling rate of n(n−1). (There is no upper limit on the number of
particles that may occupy a given site.) When a site i topples, two particles
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jump from i to nearest-neighbor sites, randomly and independently. Ini-
tially, a certain number M of particles are placed on the Nd sites of the
lattice. The particle density p=M/Nd is conserved under the dynamics.

Various initial distributions are possible. As in refs. 32 and 33 we con-
sider, for simplicity, a product-Poisson initial distribution with intensity p
at each site. We note that for finite N , the fluctuations in particle density
associated with this distribution may effectively mask the phase transition,
since, even for p<pc, there is a nonzero probability of having M/Nd >pc.
In the limit N→∞, which is implicitly taken here (and in refs. 32 and 33),
M/Nd →p, i.e., the particle density is sharply distributed. In simulation
studies of sandpiles (including those reported below) one normally fixes
M=Np rather than using a Poissonian initial condition, to avoid fluctua-
tions in the total density.

Let {n}≡ (n1, n2, ..., nN) denote the set of occupation variables defin-
ing a configuration. Note that this is a Markov process with an infinite
state space (even for N finite) since there is no upper limit on the total
number of particles. The dynamics is defined by a set of transition rates
w({n′}, {n}) (from {n} to {n′}) which are nonzero only if {n′} differs from
{n} on a set of two or three sites (site i, say, and either one or two nearest
neighbors of i), such that n′

i =ni −2 and the neighbor or neighbors gain a
total of two particles. Specifically, in one dimension the nonzero transition
rates are

w({n′}, {n})=






1
4ni(ni −1) if n′

i−1 =ni−1 +2 and n′
i+1 =ni+1,

1
4ni(ni −1) if n′

i+1 =ni+1 +2 and n′
i−1 =ni−1,

1
2ni(ni −1) if n′

i−1 =ni−1 +1 and n′
i+1 =ni+1 +1.

(1)

Evidently, configurations {n} in which ni <2, ∀i are absorbing. Such con-
figurations exist for p�1. Simulation results nevertheless indicate that an
active stationary state is possible for particle densities greater than pc,
where the critical density pc is strictly less than unity.2

We write the master equation for the process in the form(40,41):

d|�〉
dt

=L|�〉,

2It is worth noting that a rigorous proof of a continuous phase transition at a pc < 1 is so
far lacking.
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where

|�〉=
∑

{n}
p({n}, t)|{n}〉

is the probability distribution. Here p({n}, t) is the probability of configu-
ration {n}, and the state |{n}〉 is a direct product of states |nj 〉, represent-
ing exactly nj particles at site j .(40)

Defining creation and annihilation operators via the relations,

ai |ni〉=ni |ni−1〉

and

πi |ni〉= |ni+1〉,

the evolution operator for the one-dimensional stochastic sandpile, corre-
sponding to the rates of Eq. (1), is

L=
∑

i

[
1
4
(πi−1 +πi+1)

2 −π2
i

]

a2
i . (2)

(For simplicity we begin the analysis in one dimension; the generalization
to d dimensions is straightforward.) It is readily seen that L conserves the
number of particles: two particles are removed from an active site i and
transferred to either or both nearest neighbors.

2.2. Path-Integral Representation

To lay the groundwork for the perturbative analysis, we map the
Markov process defined above to a path-integral representation. As
explained in refs. 40 and 41, this involves the introduction of a probabil-
ity generating function

�t({z})≡
∑

{n}
p({n}, t)

∏

j

z
nj
j , (3)

(here {z} = (z1, z2, ..., zN) is shorthand for the set of generating function
variables), and an “evolution kernel” Ut({z}, {ζ }). The latter is used to
evolve the probability generating function, via(40),

�t({z})=
∏

j

∫
dζjdζ

′
j

2π
e
−i∑j ζj ζ

′
j Ut ({z}, {ζ })�0({iζ ′}) (t � 0), (4)
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where �0({iζ ′}) denotes the initial generating function �0({z}) with argu-
ments zj = iζ ′

j . (Here and below, integrals with limits unspecified are over
the real axis unless otherwise stated.)

Now since L is in normal form (all operators π to the left of all oper-
ators a), we can immediately write down a path-integral expression for the
evolution kernel, following Peliti’s prescription(40,41)

Ut({z}, {ζ }) =
∫

Dψ̂Dψ exp



−
∫ t

0
dt ′






∑

j

ψ̂j ψ̇j

+
∑

j

[
1
4
(ψ̂j−1 + ψ̂j+1)

2 − ψ̂2
j

]

ψ2
j





+

∑

j

zjψj (t)



 , (5)

with the boundary conditions ψj (0)= ζj and ψ̂j (t)=zj . (The dot denotes
a time derivative.) The functional integrals are over ψj (s) and ψ̂j (s) for
0� s� t :

∫

Dψ̂Dψ≡
∏

j

∫

Dψ̂j
∫

Dψj . (6)

Given the initial product-Poisson distribution, we have,

�0({z})= exp[p
∑

j

(zj −1)]. (7)

Noting that

∫
dζdζ ′

2π
f (ζ )eiζ

′(p−ζ )=f (p) , (8)

we see that for a Poisson initial distribution,

�t({z})= e−NpUt ({z}; {ζ })|ζj=p. (9)

Thus the generating function at time t is e−Np times the right hand side
of Eq. (5), evaluated with ψj (0)= ζj =p.

Let

Ut({z}, {ζ })=
∫

Dψ̂Dψ G′[ψ, ψ̂ ] , (10)
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where G′ represents the exponential in Eq. (5), and let

〈A〉≡ e−Np
∫

Dψ̂Dψ AG′[ψ, ψ̂ ]
∣
∣
∣
zn=1

, (11)

where A is a function of the fields ψ and ψ̂ .
The simplest observables of interest are the mean occupation number

(at site j ),

〈nj 〉= ∂�t({z})
∂zj

∣
∣
∣
∣
zn=1

=〈ψj 〉 , (12)

and the mean activity,

〈nj (nj−1)〉= ∂2�t({z})
∂z2
j

∣
∣
∣
∣
∣
zn=1

=〈ψ2
j 〉. (13)

Since the system is translation-invariant it is more convenient to study
φ ≡N−1 ∑

j 〈nj 〉 and ρ ≡N−1 ∑
j 〈nj (nj − 1)〉. (Note that φ=p is a con-

stant of the motion, so this quantity serves principally as a check on our
analysis.) We now introduce the discrete Fourier transform via

ψk =
∑

j

e−ijkψj , (14)

with inverse

ψj = 1
N

∑

k

eijkψk , (15)

(and similarly for other variables), where the allowed values of the wave-
vector are

k=−π, −π+2π
N
, ...,−2π

N
, 0,

2π
N
, ..., π−2π

N
. (16)

(To avoid heavy notation, we indicate the Fourier transform by the sub-
script k; the subscript j denotes the corresponding variable on the lattice.)
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In the Fourier representation, the evolution kernel may be written

Ut({z}, {ζ }) =
∫

Dψ̂Dψ exp

[

−
∫ t

0
dt ′

{

N−1
∑

k

ψ̂kψ̇−k

+N−3
∑

k1,k2,k3

ωk1,k2 ψ̂k1 ψ̂k2ψk3ψ−k1−k2−k3





+N−1

∑

k

zkψ−k(t)



 ,

(17)

where ωk1,k2 =1−cos k1 cos k2, and the boundary conditions are ψk(0)=ζk
and ψ̂k(t)=zk. (The condition zj=1 for all sites corresponds to zk=Nδk,0.)
The functional integrals are over the ψk and ψ̂k with k ranging over the
first Brillouin zone, Eq. (16). The activity density takes the form

ρ(t)≡N−1
∑

j

〈nj (nj −1)〉=N−2
∑

k

〈ψkψ−k〉, (18)

while φ=N−1〈ψk=0〉.
In the d-dimensional case, Eq. (17) remains valid if we let

ωk1,k2 =1−λd(k1)λd(k2), (19)

with

λd(k)≡ 1
d

d∑

α=1

cos kα. (20)

The wavevectors now range over the first Brillouin zone in d dimensions.
It is convenient at this point to perform a change of variables, let-

ting ψ̃k = ψ̂k −Nδk,0. As a result, G′ gains a factor of eNp (which cancels
the prefactor in Eq. (11)), and the boundary term in the argument of the
exponential vanishes when we set zk=Nδk,0. Then we have,

〈A〉=
∫

Dψ̃DψAG[ψ, ψ̃ ] , (21)

where

G[ψ, ψ̃ ]≡ exp

[

−N−1
∫ t

0
dt ′

∑

k

ψ̃kψ̇−k +
∫ t

0
dt ′LI

]

, (22)
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and where the “interaction” is now

LI = −N−3
∑

k1,k2,k3

ωk1,k2ψ̃k1ψ̃k2ψk3ψ−k1−k2−k3

−2N−2
∑

k1,k2

ωk1,0ψ̃k1ψk2ψ−k1−k2 . (23)

We pause here to note some aspects of the model that are evident
in this representation. The first is that the evolution operator L contrib-
utes nothing to the quadratic part of the action. (This can be seen imme-
diately from Eq. (2): L is quartic in the fields.) Thus the resulting theory
is nominally massless, and has no evolution at all in the Gaussian approx-
imation, LI = 0. (Diffusion, in this model, is cooperative, requiring the
presence of at least two particles at the same site.) The action, moreover,
contains no parameters whatever, the relevant parameter p being “hidden”
in the initial probability distribution. A further difference from continuum
descriptions of more familiar processes such as DP(15,16) is that the order
parameter is given by 〈ψ2〉 not 〈ψ〉.

2.3. Reorganized Action

In ref. 32 the path-integral representation serves as the basis for an
expansion of the activity density in powers of time. We now show how
the action derived above may be reorganized to generate an expansion of
the stationary activity density ρ∞ ≡ limt→∞ ρ(t). As noted, we assume a
Poisson-product initial distribution, with expectation p, for the occupation
numbers ni . Thus 〈ψk=0〉 =Np, a constant of the motion, due to parti-
cle conservation. In the infinite-size limit, the law of large numbers implies
that N−1ψk=0(t)=p, and is no longer a random variable. We may there-
fore isolate all terms with k= 0 in Eq. (23) setting each factor N−1ψk=0
equal to p. (Observe as well that ψ̃k=0, the variable conjugate to ψk=0,
is not required since ψk=0 is not random.) As a result of this procedure
G[ψ, ψ̃ ] assumes the form

G[ψ, ψ̃ ]≡ exp



−N−1
∫ t

0
dt

′ ∑

k �=0

(ψ̃kψ̇−k +γkψ̃−kψk)+
∫ t

0
dt

′ L′
I



 , (24)

with

γk =4pω−k,0 =4p (1− cos k) (25)
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and the modified interaction

L′
I = −N−3

∑

k1,k2,k3 �=0

ωk3,−k1−k2−k3ψk1ψk2ψ̃k3ψ̃−k1−k2−k3

−2pN−2
∑

k1,k2 �=0

ωk2,−k1−k2ψk1ψ̃k2ψ̃−k1−k2

−2N−2
∑

k1,k2 �=0

ω−k1−k2,0ψk1ψk2ψ̃−k1−k2 −p2N−1
∑

k �=0

ωk,−kψ̃kψ̃−k.

(26)

In Eq. (26) it is understood that none of the wavevectors associated with
the fields ψ and ψ̃ may be zero.

The reorganized action differs from the original in certain important
respects. The bilinear part L0 of the action in Eq. (24) represents indepen-
dent diffusion of particles at rate 4p.(41) (This can be seen by noting that
the Markovian evolution operator for nearest–neighboring hopping at rate
D is L=D

∑
i [(1/2)πi−1 + (1/2)πi+1 − πi ]ai , which corresponds to L =

−DN−1 ∑
k(1−cos k)ψ̂−kψk.) The appearance of diffusion at rate 4p may

be understood intuitively as follows. The rate of diffusion events at a given
site is n(n−1), i.e., twice the number of distinct pairs, so that the diffusion
rate per pair is 2. The diffusion rate per particle is twice the diffusion rate
per pair times the number of pairs per particle, or 4(n−1)	4n	4p if p

1. Unlike the original representation of Eq. (22), the control parameter p
now appears explicitly in the action. It is worth noting that this reorga-
nization of the action is not readily implemented in the operator repre-
sentation, Eq. (2), because in this case it is the operator N−1 ∑

i πiai that
assumes a fixed value p.

3. PERTURBATION THEORY

Let Eq. (24) with L′
I ≡ 0 define G0; Eq. (21) with G0 in place of G

defines the free expectation 〈A〉0. Then for k �= 0 we have(32) 〈ψk(s)〉0 =
〈ψ̃k(s)〉0 =0, and the basic contraction or propagator is

〈ψ
k
′ (u)ψ̃k(s)〉0 =Nδ

k
′
,−k�(u− s)e−γk(u−s), (27)

where � represents the step function. As usual in this formalism,
�(0)=0.(41) The free expectation of n fields ψ̃ and n fields ψ is given by
the sum of all possible products of n contractions.
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The expectation of an observable may be written in the form

〈A〉=
〈
Ae

∫ t
0 L′ dt ′

〉

0,
(28)

which can be expressed in terms of free expectations if we expand the
exponential. In this expansion, each field ψ̃k(τ ) must be contracted with
a field ψ−k(τ

′
), with τ

′
> τ . At nth order there is a factor of 1/n! and

integrations
∫
dt1 · · ·dtn over the interval [0, t ]. We impose the time order-

ing t � t1 � t2 � · · · � tn � 0, thereby cancelling the factor 1/n! We adopt
a diagrammatic notation(32) in which fields ψ(ψ̃) are represented by lines
entering (leaving) a vertex. All lines are directed to the left, the direction
of increasing time. The first term in L′

I , Eq. (26), corresponds to a ver-
tex with four lines (“4-vertex”), the second and third to vertices with three
lines (“3-vertex”), while the fourth, with two lines exiting, will be referred
to as a “source.” Figure 1 shows the vertices associated with L′

I , as well
as the “sink” corresponding to ρ. Vertex b will be called a “bifurcation”
and c a “junction”. In this way, the activity density

ρ=N−2
∑

k

〈ψkψ−k〉=N−2
∑

k

〈ψkψ−k e
∫ t

0 dt
′ L′

I 〉0 (29)

Fig. 1. Vertices (a–d) in the interaction L′ and the sink (e) representing the activity density.
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takes the form

ρ=N−2〈ψ2
k=0 e

∫ t
0 dt

′ L′
I 〉0 +N−2

∑

k �=0

〈ψkψ−k e
∫ t

0 dt
′ L′

I 〉0. (30)

In the first term the only nonzero contribution is at zeroth order (no fac-
tors of L′

I ), and is equal to p2, associated with the initial Poisson distri-
bution. The second term generates an infinite set of diagrams; the zeroth
order term vanishes since 〈ψkψ−k〉=0 for k �=0.

Consider the first order diagram in the expansion. From Fig. 1 it is
evident that the only vertex that can be contracted with the sink (without
leaving dangling lines) is the source. This simple loop, shown as the first
diagram on the right hand side of Fig. 2, makes the contribution

−2p2N−1
∑

k

ωk,−k
∫ t

0
e−2γk(t−t1) = p

4

∫ π

−π
dk

2π
(1+ cos k)[e8p(1−cos k)t −1]

= p

4

{
e−8pt [I0(8pt)+ I1(8pt)]−1

}
,

(31)

where the prefactor 2 on the left hand side is a combinatorial factor and
Iν denotes the modified Bessel function. Here we used

N−1
∑

k

N→∞−→
∫ π

−π
dk

2π
. (32)

Thus this diagram yields the contribution identified in ref. 32 as ρmax(t),
the sum of all contributions at order tn (n= 1,2,3, ...) proportional to
pn+1, the highest power of p allowed at a given order. In the limit t→∞
the contribution to the activity from this term is −p/4. (As will be seen,
all contributions to ρ coming from diagrams are of lower order in p than
the zeroth-order term p2.)

Fig. 2. Definition of a “dressed loop” as the sum of one, two, three,... simple loops joined
at 4-vertices.
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To study the stationary regime it is convenient to use the Laplace
transform. For example, the Laplace transform of the contribution due to
the simple loop, Eq. (31), is

−2p2

s

∫ π

−π
dk

2π
1− cos2 k

s+8p(1− cos k)
, (33)

where s denotes the transform variable. Using the property limt→∞ f (t)=
lims→0 sf̃ (s), we obtain the limiting contribution −p/4 directly.

Consider an arbitrary diagram D of n vertices, and denote the time-
dependent factors in its contribution to ρ(t) by fD(t). The Laplace trans-
form of this contribution has the form

f̃D(s) =
∫ ∞

0
dt e−st

∫ t

0
dt1

∫ t1

0
dt2 ...

∫ tn−1

0
dtne

−α1(t−t1)−α2(t1−t2)...−αn(tn−1−tn)

=
∫ ∞

t1

dt

∫ ∞

t2

dt1 ...

∫ ∞

0
dtne

−(α1+s)(t−t1)−(α2+s)(t1−t2)...(αn+s)(tn−1−tn)−stn

= [s(α1 +s)(α2 +s)...(αn+s)]−1, (34)

where the αi are functions of the wavevectors. Then we have

f̄D ≡ lim
t→∞fD(t)=

n∏

i=1

1
αi
. (35)

The factors αi for diagram D may be determined by drawing vertical lines
through each vertex of D. Then αi is the sum of the factors γq for all
propagators running between the vertical lines associated with vertices i
and i − 1 (here t0 ≡ t), regardless of whether or not these propagators link
vertices i and i−1.

For example, a diagram composed of n simple loops (see Fig. 2)
makes a contribution of

(−1)n2np2

s

[∫ π

−π
dk/2π

1− cos2 k

s+8p(1− cos k)

]n

, (36)

to ρ̃(s), and so its contribution to ρ∞ is

(−1)n2np2

(8p)n
= (−1)np2 1

(4p)n
. (37)
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Summing on n, we find the contribution due to this sequence of diagrams
to the reduced activity ρ̄≡ limt→∞(ρ/p2):

∞∑

n=1

(−1
4p

)n

=− 1
1+4p

≡−κ. (38)

In certain cases it is straightforward to replace a simple loop with the
infinite sum of 1, 2, 3, ... loops. This procedure, illustrated graphically in
Fig. 2, will be called dressing a loop.

Figure 3 shows a three-vertex diagram not included in the sequence
represented by Fig. 2. It makes the following contribution to ρ̄:

−32p
4p(8p)2

∫ π

−π
dk

2π
(1+ cos k)

∫ π

−π
dq/2π

1− cos q cos (k−q)
3− cos q− cos k− cos (k−q) .

(39)

The integral over wavevector q arises frequently in the diagrammatic series
and can be evaluated in closed form

I (k) =
∫ π

−π
dq

2π
1− cos q cos (k−q)

3− cos q− cos k− cos (k−q) .

= 1
2




3− c−√

(1− c)(7− c)
1+ c +

√

1− c
7− c



 , (40)

where c denotes cos k.
In any diagram (beyond the set included in Fig. 2), we may insert

any number of loops immediately to the right of the sink. That is, the
sink may be replaced by a dressed loop. The same applies to the right-
most source, vertex n. The result is that the contribution of the original

Fig. 3. A three-vertex diagram.
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diagram is multiplied by [4p/(1 + 4p)]2. Once this factor is included, no
diagram with a 4-vertex immediately to the left of the rightmost source
(i.e., in position n−1) or immediately to the right of the sink (position 1)
need be included in the series.

4. DIAGRAMMATIC ANALYSIS

To begin we define the rules for constructing diagrams in the series for
ρ̄.(32) (Since there is exactly one factor of N−1 associated with each wave-
vector sum, all of the latter may be changed to integrals, using Eq. (32).)

1. Draw all connected diagrams of n vertices and a sink to the left
of all vertices; the rightmost vertex must be a source. Each line exiting ver-
tex j must be contracted with a line entering some vertex i <j . There is a
factor δk′,−k associated with each such contraction, where k is the wavevec-
tor exiting vertex j and k′ the wavevector entering vertex i. The require-
ment that all lines be contracted leads to the condition 2(ns − 1)+ nb −
nc=0, where ns is the number of sources, nb the number of bifurcations,
and nc is the number of junctions.

2. Each diagram possesses a factor of (−1)n and a combinatorial
factor reflecting the number of ways of realizing the contractions. In the
series for ρ̄, this factor is given by 2C , with C=1+n3 +2n4 +ns−�, where
n3 is the number of 3-vertices (of either kind), n4 the number of 4-vertices,
and � is the number of simple loops.

3. Associated with each bifurcation is a factor 2pωk1,k2 = 2p[1 −
cos k1 cos k2]. Each junction carries a factor 2ωk,0 and each 4-vertex a factor
ωk1,k2 . Each source carries a factor of p2ωk,−k. (The ki denote the wavevec-
tors exiting the vertex.)

4. There is a factor f̄D resulting from the time integrations, as dis-
cussed above.

5. Replace the sink and rightmost source with dressed loops, lead-
ing to the factor [4p/(1+4p)]2 mentioned above, and exclude all diagrams
with a 4-vertex in position 1 or n−1.

6. Integrate over all wavevectors.

Collecting the factors of p and 1/p associated with the various vertices,
f̄D, and the factor of p−2 in the definition of ρ̄, we find that each diagram in
the series for ρ̄ contains an overall factor p−r , where r=n−nb−2(ns −1).
Using the relation 2(ns −1)+nb−nc=0, we have r=n−nc.

In order to take advantage of our simple results for the sum of
an infinite set of diagrams represented by the dressed loops, we adopt
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κ ≡ (1 + 4p)−1 as the expansion parameter rather than p. Noting that
4p/(1+4p)=1−κ, and that 1/p= 4κ/(1 − κ), we see that the first order
diagram (i.e., the single dressed loop of Fig. 2) carries a factor of
4/(1+4p)=4κ, while diagrams at higher order carry a factor [4p/(1 +
4p)]2, so that at order 1/pr there is an overall factor of (4κ)r/(1 − κ)r−2.
Thus for r > 2, diagrams ∝ 1/pr contribute at order κr and at all higher
orders. Diagrams ∝1/pr must have at least r+1 vertices and no more than
3r−2 vertices.

Enumeration of diagrams at a given order involves (1) identifying all
allowable sequences of n vertices, and (2) identifying all possible sets of
connections between vertices, for each sequence. For diagrams with n � 3
(i.e., those not included in the simple dressed loop of Fig. 2), vertex 1
(nearest the sink) must be a junction. (As explained above it cannot be a
4-vertex. If it were a bifurcation, the wavevector of the single line entering
this vertex would of necessity be zero, but such terms have been excluded
from the action.) For similar reasons, vertex n−1 must be either a source
or a bifurcation. Once the vertex sequence has been fixed, all possible sets
of contractions of outgoing and incoming lines must be enumerated. The
single line exiting vertex 1 must, naturally, always terminate at the sink.

The enumeration of sequences and connections is readily codified in
an algorithm that may be implemented via computer. In our algorithm,
for each n and r, all possible vertex sequences (subject to the above lim-
itations) are enumerated. Then all possible connections are generated, by
simply running through all termination points for each line independently,
and rejecting those choices that result in uncontracted lines. In the algo-
rithm, a diagram is specified by its bond set. For a diagram with m lines,
the bond set is given by the set of ordered pairs {(v1, v

′
1), ..., (vm, v

′
m)},

where v′
j is the vertex from which line j emanates and vj <v

′
j the vertex

where it terminates. (vj =0 denotes the sink.) Thus the diagram of Fig. 3
can be written: (01) (12) (12) (23) (03). The algorithm was verified against
hand enumeration up to third order.

Since the number of diagrams grows very rapidly, and each diagram
corresponds to a multidimensional integral, we extended the routine to
perform the wavevector integrations for each diagram generated. This
entails construction of the numerator and denominator of the integrand,
which are products of factors involving the cosines of various linear
combinations of wavevectors. The numerator is a product of factors asso-
ciated with each vertex, as noted in item 3 above. The denominator is a
product of factors αi associated with each interval between vertices. These
factors are readily determined, given the vertex sequence and bond set,
if the wavevectors associated with each line are suitably codified. Note
that there is one free wavevector ki associated with each vertex, except for
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junctions, so that the number of wavevector sums is r. The wavevector
exiting a junction is equal to the sum K of those entering. The lines exit-
ing a source carry wavevectors k′ and −k′. In the case of a bifurcation
or a 4-vertex we may take the wavevectors of the lines exiting as k′ and
K−k′, where K denotes the wavevector entering (or the sum of the wave-
vectors entering, in the case of a 4-vertex). Thus we see that the construc-
tion of the integrand (including associated numerical factors) is a straight-
forward task that can also be realized in a computational algorithm. The
integrals over the ki are evaluated numerically using a midpoint method.3

Based on results for varying numbers of intervals in the numerical integra-
tion, we are able to determine the coefficients with a relative uncertainty
of 10−4 or less.

5. Results

We have carried out the expansion for ρ̄ to order κ4. Call the num-
ber of n-vertex diagrams at order κrNn,r and the contribution of this set
of diagrams to the coefficient of κr/(1−κ)r−2 in this series bn,r ; these val-
ues are reported in Table I.

The diagrammatic expansion yields the following expression for the
stationary activity density

ρ̄∞ =1−κ−1.788 040κ2 −4.414 481κ3 −14.632(2)κ4 +O(κ5), (41)

where the figure in parenthesis denotes a numerical uncertainty. In Fig. 4
we compare Eq. (41) against the results of a Monte Carlo simulation(33)

using systems of up to 800 sites. (For each p value, simulations are per-
formed for various system sizes and the results extrapolated to the infi-
nite-size limit.) For p � 3 the difference between the series expression and
simulation is less than 0.1%. In ref. 33, a similar degree of precision is
obtained by extrapolating (using Padé approximants) a 16-term series (in
powers of t) to the infinite-time limit. The present series of four terms
appears to furnish (without transformation or extrapolation), information
equivalent to that obtained from a much longer series in powers of t . It
is worth noting that while the time series is divergent, the present series
shows no evidence of being divergent for small values of κ. If we assume
convergence for small κ, it is natural to interpret the first singularity on
the positive-κ axis as marking the phase transition.

3The enumeration/integration code is available on request to the authors.
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Table I. Numbers of Diagrams Nn,r and Coefficients bn,r in the Expansion of the

Activity for the One-Dimensional Sandpile

n r Nn,r bn,r

3 2 2 −2.384 052
4 2 3 0.596 013

4 3 4 5.625 989
5 3 49 −19.520 916
6 3 180 11.376 647
7 3 306 −1.896 110

5 4 8 −13.225 188
6 4 311 135.895 511
7 4 3 471 −311.353
8 4 21 961 256.075
9 4 76 261 −88.685

10 4 136 404 11.092

With a series of only four terms it is of course difficult to draw
firm conclusions regarding the location of the critical point. We neverthe-
less analyze the series via Padé approximants.(44) The [2,2] approximant is
the best behaved and is in excellent accord with simulation for p � 1.5.
It yields a critical value of pc = 0.8677(3). (The [1,3] and [3,1] approxi-
mants give pc = 0.668 and 0.702, respectively.) It is usual to analyse the
Padé approximant to the series for the derivative of the logarithm of the
order parameter (d ln ρ̄/dκ in the present instance), as this function should
exhibit a simple pole at the critical point. The [2,1] approximant does in
fact give an improved estimate of pc = 0.9069 (about 5% below the value
found in simulations), while the [1,2] approximant yields pc = 0.860. (A
very similar result for pc is obtained via Padé analysis of the 16-term time
series.(33)) The residue at the pole of the [2,1] approximant is 0.198, well
below any of the numerical estimates for the critical exponent β that have
been reported, which suggest β 	 0.4.(24–26) For p � 3, the Padé expres-
sion and simulation agree to within uncertainty (see Fig. 4). (The relative
uncertainty of the simulation result is 10−4.)

The chief barrier to extending the series is the rapid growth in the
cpu time required to evaluate the multiple integrals over wavevectors, com-
bined with the explosive growth in the number of diagrams. (Enumeration
of the diagrams represents a small faction of the computing time). Thus in
the case of the stochastic sandpile the present approach does not appear
viable beyond fourth order.



20 Vidigal and Dickman

Fig. 4. Scaled stationary activity density ρ̄ versus particle density p in one dimension.
Upper curve: series prediction, Eq. (41); the curve labeled [2,1] is obtained by integrating the
Padé approximant to the series for d ln ρ̄/dκ; points: Monte Carlo simulation. Error bars are
smaller than the symbols.

For similar reasons the analysis of the two-dimensional case is
restricted to r � 3. As explained in section 2.2, the formalism remains
valid in d dimensions if we replace all factors ωk,k′ with ωk1,k2 defined in
Eq. (19). Thus γk in Eq. (25) becomes

γk =4p [1−λd(k)] (42)

with λd given by Eq. (20). The expansion involves the same set of dia-
grams in any dimension; only the integrals change, with the wavevectors
now ranging over the first Brillouin zone in d dimensions.

In two dimensions our result for the stationary activity density is

ρ̄∞ =1−κ−1.704 155κ2 −3.7292κ3 +O(κ4). (43)
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Fig. 5. Scaled stationary activity density ρ̄ versus particle density p in two dimensions.
Upper curve: series prediction, Eq. (43); lower curve: [2,1] Padé approximant to the series;
points: Monte Carlo simulation.

The series prediction is compared against Monte Carlo simulation in
Fig. 5; good agreement is observed for p � 1.5. The [2,1] and [1,2]
Padé approximants to the three-term series for ρ̄ yield critical values of
pc=0.507 and 0.502, respectively, whereas the estimate from simulation is
0.715.

6. CORRELATION FUNCTIONS AND PROBABILITY DISTRIBUTION

Consider the stationary expectation 〈njnj+�〉 of the product of occu-
pations at sites j and j +�. For � �=0 this may be written as(32)

C(�)≡N−1
∑

j

〈njnj+�〉=N−2
∑

k

eik�〈ψkψ−k〉 (44)

and separating the k=0 term as in Eq. (30) we find

C(�)=p2 +N−2
∑

k �=0

cos k� 〈ψkψ−ke
∫ t

0 dt
′L′

I 〉0. (45)
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The second term, an infinite sum of diagrams, defines the connected
two-point correlation function G(|�|). The lowest order contribution comes
from the one-vertex diagram (simple loop) giving

G(1)(|�|)=−p
4

∫ π

−π
dk

2π
cos k� (1+ cos k), (46)

or G(1)(1)= −p/8 and G(1)(|�|)= 0 for |�|> 1. When the dressed loop is
evaluated this becomes G(1)(1)= −κp2/8. The correlation for sites sepa-
rated by greater than unit distance is O(κ2) or higher. From this result we
can draw the following conclusions: (1) the nearest-neighbor correlation is
negative for large p; (2) for large p correlations decay rapidly in space; (3)
as p→∞, the reduced correlation Ḡ(�)=G(�)/p2 decays to zero (as 1/p
or faster) so that in this limit the site occupancies are independent random
variables.

The stationary expectation of (ψj )m (product of m fields at the same
site) is related to the m-th factorial moment of the one-site occupation dis-
tribution. [For m=2 this is seen explicitly in Eq. (13).] For m=3 for exam-
ple, we have

〈n3〉F ≡N−1
∑

j

〈nj (nj −1)(nj −2)〉=N−3
∑

k,k′
〈ψkψk′ψ−k−k′ 〉, (47)

which can be written

〈n3〉F =p3 +3pN−2
∑

k �=0

〈ψkψ−k〉+N−3
∑

k,k′ �=0

〈ψkψk′ψ−k−k′ 〉. (48)

The second term equals 3p(ρ − p2) and so is O(p2) for large p. The
third term must be expanded in diagrams with a three line sink. The low-
est order diagram thus involves two vertices, a source and a bifurcation,
and is O(p) for large p. We see then that 〈n3〉F = p3[1 + O(1/p)] for
large p. The same line of reasoning shows that the m-th factorial moment
approaches pm as p→∞. In this limit the one-site marginal distribution
is therefore Poisson with parameter p, and by our previous result on inde-
pendence, the joint probability distribution is a product of such distribu-
tions.

We defer a detailed analysis of correlation functions to future work,
and stress that the main result of the present section is that in the large-p
limit, the probability distribution is a product of identical Poisson distri-
butions at each site, as was conjectured in ref. 33. It is readily seen that
this remains valid in d � 2 dimensions.
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7. DISCUSSION

We derive an expansion for the stationary activity density in a
stochastic sandpile with a conserved particle density. Because of con-
servation, the k = 0 Fourier mode of the particle density (and the
associated field ψk) has a fixed value, rather than being a random
variable. This permits us to reorganize the action so that the control
parameter p appears explicitly. The bilinear part of the action now
describes diffusion at a rate 4p. Because of this, the propagator car-
ries an exponential factor, and all time integrations can be realized
to obtain the limiting (t → ∞) activity directly. The ensuing expan-
sion for ρ̄ = limt→∞ ρ(t)/p2 involves the parameter κ = (1 + 4p)−1. We
are able to sum certain infinite classes of diagrams through the device
of “dressed loops.” Despite this, the number of diagrams to be eval-
uated at each order grows explosively, so that our result extends only
to O(κ4) (O(κ3) in two dimensions). The fourth-order series agrees
very well with simulation in the supercritical regime, and yields (via
Padé approximation) the critical value pc to within about 5%. A similar
favorable comparison is seen in the two-dimensional case, although the
three-term series furnishes a poor estimate for pc. Given these encour-
aging results, it is reasonable to hope that extended series will yield
quantitative predictions for critical properties. In light of the complex-
ities of the diagrammatic approach, a more promissing direction for
such an extension may involve a direct operator expansion, as used
in ref. 33 to extend the temporal series. We have also used the reor-
ganized expansion to show that in the large-p limit, the sandpile is
governed by a Poisson-product distribution. Our results strengthen the
conclusion, based until now on simulation and mean-field-like analy-
ses, that conserved sandpiles exhibit a phase transition as the parti-
cle density is varied. It is of great interest to know if the details of
this transition can be analysed using the operator and path-integral
formalisms.
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